

Feb 19-8:47 AM

\qquad

Nov 6-7:32 AM

Formulas for $y=a+b x \quad$ Given:

$a=\frac{43 \cdot 55-15 \cdot 145}{5 \cdot 55-15^{2}}=\frac{190}{50}=3.8 \sqrt{5 \cdot 145-15.43}=2=3.8+1.6 x$
$b=\frac{5 \cdot 145-15.43}{5.55-15^{2}}=\frac{80}{50}=1.6$

Nov 6-7:46 AM

formula for r :

$r=n \Sigma x y-\Sigma x \cdot \Sigma y$
$r=\frac{\sqrt{n \sum x^{2}-\left(\sum x\right)^{2}} \cdot \sqrt{n \sum y^{2}-\left(\sum y\right)^{2}}}{\sqrt{5.55-15 \cdot 43} \cdot \sqrt{5 \cdot 397-43^{2}}}\left|\begin{array}{l}\text { Given: } \\ \sum x=15, \sum x^{2}=55, \\ n=5, \sum y=43, \\ =\frac{80}{\sqrt{50} \sqrt{136}}=\frac{80}{\sqrt{6800}}\end{array}\right| \begin{aligned} & \sum y^{2}=397, \sum x y=145\end{aligned}$
$=.970$

Nov 6-8:02 AM

Now what about r^{2} ?
r^{2} is the Coefficient of determination Always express in whole \%
r^{2} tells us what $\%$ of Y-values are explained by x-values.

From last example

$$
r^{2}=.970^{2}=.941 \approx 94 \%
$$

$$
94 \% \text { of } Y \text {-values are }
$$

$$
\text { explained by } x \text {-values. }
$$


```
Use the chart below
Se the chart below
\begin{tabular}{l|llll}
\(x\) & \(y\) & 1) Scatter plot \\
\hline 1 & 10 & & & \\
2 & 8 & & & \\
4 & 8 & & & \\
5 & 5 & \(2)\) \\
8 & 2 & 2) \(n=5\) & \(\sum x=20\) & \(\sum x^{2}=110\) \\
\(\sum y=33\) & \(\sum y^{2}=257\) & \(\sum x y=99\)
\end{tabular}
3) Sind
\(\Delta y=11-1.1 x\)
\(a=11\)
\(b=-1.1\)
\(\rightarrow\) Coed. of determination
\(r^{2}=.926\) \(r^{2} \approx 93 \%\) \(93 \%\) of Y-values are explained by \(x\)-Values.
\(r=-.962\)
\(7 \%\) are unexplained
\(\downarrow\)
Linear Correlation Coefficient
is close to \(-1 \Rightarrow\) It appears to be Significant.
```

Nov 6-8:17 AM

Class QE 8

\qquad

Nov 6-9:04 AM

$$
\begin{aligned}
& \begin{array}{c|c}
\text { QZScore } & \text { Exam Score } \\
\hline 8 & 85 \\
\hline 7 & 80 \\
\hline 10 & 90 \\
\hline 10 & 100 \\
\hline 5 & 65 \\
\hline 8 & 90
\end{array} \\
& \text { QZ Score } \rightarrow x \rightarrow L 1 \\
& \text { Exam Score } \rightarrow y \rightarrow L \text { ? } \\
& \operatorname{Lin} \operatorname{Reg}(a+b x) \text { with } L I \varepsilon L C \\
& \begin{array}{l}
a=38 . \overline{3} \approx 38 \\
b=5.8 \overline{3} \approx 6
\end{array} \rightarrow y \approx 38+6 x \\
& \text { 88\%. of exam Scores are } \\
& r^{2}=.875 \approx 88 \% \\
& r=.935 \checkmark \\
& \text { explained by Quiz Scores. } \\
& r \text { is close to } 1 . \\
& 12 \% \text { are unexplained } \\
& r \text { is close to } 1 . \\
& \text { Linear Correlation seems to be Significant. }
\end{aligned}
$$

Predict exam Score for Someone with
quiz Score 7.

1) Assume $\underbrace{r \text { is Significant. }}_{\text {use Regression line }}$

$$
y=38+6 x \quad y=38+6(7)=80
$$

2) Assume $\underbrace{r \text {, }}_{\text {Use } \bar{y}=85 \text { is not significant }}$

$$
\bar{y}=\frac{\sum y}{n} \text { or } V A R S \text { Statistics } 5: \bar{y} \text { Enter }
$$

Nov 6-9:20 AM

Given $n=6, \sum x=48, \sum x^{2}=402$,

$$
\sum y=510, \sum y^{2}=44050, \sum x y=4185
$$

Find $y=a+b x$, Round to whole \#1.

$$
\begin{aligned}
a=\frac{\sum y \cdot \sum x^{2}-\Sigma x \cdot \Sigma x y}{n \sum x^{2}-(\Sigma x)^{2}} & =\frac{510 \cdot 402-48 \cdot 4185}{6 \cdot 402-48^{2}} \\
& =\frac{4140}{108}=38 . \overline{3} \\
& \approx 38
\end{aligned}
$$

$$
b=\frac{n \sum x y-\sum x \cdot \sum y}{n \sum x^{2}-\left(\sum x\right)^{2}}=\frac{6 \cdot 4185-48 \cdot 510}{6 \cdot 402-48^{2}}
$$

$$
\hat{y}=a+b x \quad=\frac{630}{108}=5.8 \overline{3}
$$

$$
\approx 6
$$

$\hat{y} \approx 38+6 x$
\qquad
\qquad
3) Submit as one file with pages in order.
\qquad

